
High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

High Availability under Eventual Consistency

Carlos Baquero
Universidade do Minho

MIEI SDLE 2021

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

The speed of communication in the 19th century
Francis Galton Isochronic Map

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

The speed of communication in the 21st century
RTT data gathered via http://www.azurespeed.com

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

The speed of communication in the 21st century
If you really like high latencies . . .

Time delay between Mars and Earth
blogs.esa.int/mex/2012/08/05/time-delay-between-mars-and-earth/

Delay/Disruption Tolerant Networking
www.nasa.gov/content/dtn

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Latency magnitudes
Geo-replication

λ, up to 50ms (local region DC)

Λ, between 100ms and 300ms (inter-continental)

No inter-DC replication

Client writes observe λ latency

Planet-wide geo-replication

Replication techniques versus client side write latency ranges

Consensus/Paxos [Λ, 2Λ] (with no divergence)

Primary-Backup [λ,Λ] (asynchronous/lazy)

Multi-Master λ (allowing divergence)

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

EC and CAP for Geo-Replication

Eventually Consistent. CACM 2009, Werner Vogels

In an ideal world there would be only one consistency model:
when an update is made all observers would see that update.

Building reliable distributed systems at a worldwide scale
demands trade-offs between consistency and availability.

CAP theorem. PODC 2000, Eric Brewer

Of three properties of shared-data systems – data consistency, system
availability, and tolerance to network partition – only two can be
achieved at any given time.

We will focus on AP.

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

High Availability – Eventual Consistency

A special case of weak consistency. After an update, if no new
updates are made to the object, eventually all reads will return the
same value, that reflects the last update. E.g: DNS.

This can later be reformulated to avoid quiescence, by adapting a
session guarantee.

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Session Guarantees [Doug Terry, et al]

Read Your Writes – read operations reflect previous writes.

Monotonic Reads – successive reads reflect a non-decreasing set
of writes.

Writes Follow Reads – writes are propagated after reads on
which they depend. (Writes made during the session are ordered
after any Writes whose effects were seen by previous Reads in
the session.)

Monotonic Writes – writes are propagated after writes that
logically precede them. (In other words, a Write is only
incorporated into a server’s database copy if the copy includes all
previous session Writes.)

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

From sequential to concurrent executions

Consensus provides illusion of a single replica

This also preserves (slow) sequential behaviour

Sequential execution

Ops O o // p // q

Time //

We have an ordered set (O, <). O = {o, p, q} and o < p < q

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

From sequential to concurrent executions

EC Multi-master (or active-active) can expose concurrency

Concurrent execution

p // q

��
Ops O o

??

r

s

77

Time //

Partially ordered set (O,≺). o ≺ p ≺ q ≺ r and o ≺ s ≺ r
Some ops in O are concurrent: p ‖ s and q ‖ s

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Conflict-Free Replicated Data Types (CRDTs)

Convergence after concurrent updates. Favor AP under CAP

Examples include counters, sets, mv-registers, maps, graphs

Operation based CRDTs. Operation effects must commute

State based CRDTs are rooted on join semi-lattices

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Operation-based CRDTs, effect commutativity

In some datatypes all operations are commutative.

PN-Counter: inc(dec(c)) = dec(inc(c))

G-Set: adda(addb(s)) = addb(adda(s))

For more complex examples (e.g. sets with add and remove)
operations need to generate “special” commutative effects. Here we
will only cover examples of state-based CRDTs as they are more
common in practice.

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

State-based CRDTs, Join semi-lattices

An (partial) ordered set S; 〈S ,≤〉.
A join, t, deriving least upper bounds; 〈S ,≤,t〉.
An initial state, usually the least element ⊥; 〈S ,≤,t,⊥〉.
(∀a ∈ S , a t ⊥ = a)

Alternative to a (unique) initial state, is a one time init in each
replica assigning any element from S .

Join properties in a semilattice 〈S ,≤,t〉:
Idempotence, a t a = a,
Commutativity, a t b = b t a,
Associative, (a t b) t c = a t (b t c).

≤ reflects monotonic state evolution – increase of information.

Updates must conform to ≤.

In general, queries can return non-monotonic values, and in
other domains than S . E.g: Returning a set size.

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Eventual Consistency, non stop

Now convergence can related to known updates, with no need to
stop updates: upds(a) ⊆ upds(b)⇒ a ≤ b.

This is slightly weaker than the previous definition and implies it:
upds(a) = upds(b)⇒ a = b.

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Design of Conflict-Free Replicated Data Types

A partially ordered log (polog) of operations implements any CRDT

Replicas keep increasing local views of an evolving distributed polog

Any query, at replica i , can be expressed from local polog Oi

Example: Counter at i is |{inc | inc ∈ Oi}| − |{dec | dec ∈ Oi}|

CRDTs are efficient representations that follow some general rules

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Principle of permutation equivalence

If operations in sequence can commute, preserving a given result,
then under concurrency they should preserve the same result

Sequential

inc(10) // inc(35) // dec(5) // inc(2)

dec(5) // inc(2) // inc(10) // inc(35)

Concurrent

inc(35)

%%
inc(10)

88

&&

inc(2)

dec(5)

99

You guessed: Result is 42

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Implementing Counters
Example: CRDT PNCounters

A inc(35)

%%
B inc(10)

88

&&

inc(2)

C dec(5)

99

Lets track total number of incs and decs done at each replica

{A(incs, decs), . . . ,C (. . . , . . .)}

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Implementing Counters
Example: CRDT PNCounters

Separate positive and negative counts are kept per replica

A {A(35, 0),B(10, 0)}

**
B {B(10, 0)}

66

((

{A(35, 0),B(12, 0),C (0, 5)}

C {B(10, 0),C (0, 5)}

44

Joining does point-wise maximums among entries (semilattice)

At any time, counter value is sum of incs minus sum of decs

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

State-based CRDTs: PN-Counter

Σ = I → N×N
σ0
i = {(r , (0, 0)) | r ∈ I}

applyi (inc,m) = m{i 7→ (fst(m(i)) + 1, snd(m(i)))}
applyi (dec,m) = m{i 7→ (fst(m(i)), snd(m(i)) + 1)}

evali (rd,m) =
∑
r∈I

fst(m(r))− snd(m(r))

mergei (m,m
′) = {(r ,max(m(r),m′(r))) | r ∈ I}

Note: max is pointwise maximum

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Registers

Registers are an ordered set of write operations

Sequential execution

A wr(x) // wr(j) // wr(k) // wr(x)

Sequential execution under distribution

A wr(x)

$$

wr(x)

B wr(j) // wr(k)

99

Register value is x , the last written value

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Last Writer Wins

A simple approach to evolve state without strong coordination, is to
adopt a Last Writer Wins policy (see also Thomas write rule).
Recently popularized in the Cassandra system, this policy uses
timestamps to discard older writes and attain convergence.

Σ = T ×N
σ0
i = (0, 0)

applyi ((wr, t ′, n′), (t, n)) = (t, n) if t ′ < t else (t ′, n′)

evali (rd, (t, n)) = n

mergei ((t, n), (t ′, n′)) = (t, n) if t ′ < t else (t ′, n′)

LWW Integer

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Implementing Registers
Naive Last-Writer-Wins

CRDT register implemented by attaching local wall-clock times

Sequential execution under distribution

A (11:00)x

&&

(11:30)?

##
B (12:02)j // (12:05)k

88

?

Problem: Wall-clock on B is one hour ahead of A

Value x might not be writeable again at A since 12:05 > 11:30

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Registers
Sequential Semantics

Register shows value v at replica i iff

wr(v) ∈ Oi

and

@wr(v ′) ∈ Oi · wr(v) < wr(v ′)

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Preservation of sequential semantics

Concurrent semantics should preserve the sequential semantics

This also ensures correct sequential execution under distribution

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Multi-value Registers

Concurrency semantics shows all concurrent values

{v | wr(v) ∈ Oi ∧ @wr(v ′) ∈ Oi · wr(v) ≺ wr(v ′)}

Concurrent execution

A wr(x)

%%

// wr(y) // {y , k} // wr(m) // {m}

B wr(j) // wr(k)

99

Dynamo shopping carts are multi-value registers with payload sets

The m value could be an application level merge of values y and k

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Implementing Multi-value Registers

Concurrency can be preciselly tracked with version vectors

Concurrent execution (version vectors)

A [1, 0]x

%%

// [2, 0]y // [2, 0]y , [1, 2]k // [3, 2]m

B [1, 1]j // [1, 2]k

77

Metadata can be compressed with a common causal context and a
single scalar per value (dotted version vectors)

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Registers in Redis
LWW arbitration

Multi-value registers allows executions leading to concurrent values

Presenting concurrent values is at odds with the sequential API

Redis both tracks causality and registers wall-clock times

Querying uses Last-Writer-Wins selection among concurrent values

This preserves correctness of sequential semantics

A value with clock 12:05 can still be causally overwritten at 11:30

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

State-based CRDTs: G-Set

Σ = P(V)

σ0
i = {}

applyi ((add, v), s) = s ∪ {v}
evali (rd, s) = s

mergei (s, s
′) = s ∪ s ′

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

State-based CRDTs: 2P-Set

Σ = P(V)× P(V)

σ0
i = {}, {}

applyi ((add, v), (s, t)) = s ∪ {v}, t
applyi ((rmv, v), (s, t)) = s, t ∪ {v}

evali (rd, s) = s \ t
mergei ((s, t), (s ′, t ′)) = s ∪ s ′, t ∪ t ′

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Sets
Sequential Semantics

Consider add and rmv operations

X = {. . .}, add(a) −→ add(c) we observe that a, c ∈ X

X = {. . .}, add(c) −→ rmv(c) we observe that c 6∈ X

In general, given Oi , the set has elements

{e | add(e) ∈ Oi ∧ @rmv(e) ∈ Oi · add(e) < rmv(e)}

2P-Set breaks sequential semantics

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Sets
Concurrency Semantics

Problem: Concurrently adding and removing the same element

Concurrent execution

A add(x)

%%

// rmv(x) // {?} // add(x) // {x}

B rmv(x) // add(x)

;;

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Concurrency Semantics
Add-Wins Sets

Let’s choose Add-Wins

Consider a set of known operations Oi , at node i , that is ordered by
an happens-before partial order ≺. Set has elements

{e | add(e) ∈ Oi ∧ @ rmv(e) ∈ Oi · add(e) ≺ rmv(e)}

Is this familiar?

The sequential semantics applies identical rules on a total order

Redis CRDT sets are Add-Wins Sets

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Concurrency Semantics
Add-Wins Sets

Let’s choose Add-Wins

Consider a set of known operations Oi , at node i , that is ordered by
an happens-before partial order ≺. Set has elements

{e | add(e) ∈ Oi ∧ @ rmv(e) ∈ Oi · add(e) ≺ rmv(e)}

Is this familiar?

The sequential semantics applies identical rules on a total order

Redis CRDT sets are Add-Wins Sets

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Concurrency Semantics
Add-Wins Sets

Let’s choose Add-Wins

Consider a set of known operations Oi , at node i , that is ordered by
an happens-before partial order ≺. Set has elements

{e | add(e) ∈ Oi ∧ @ rmv(e) ∈ Oi · add(e) ≺ rmv(e)}

Is this familiar?

The sequential semantics applies identical rules on a total order

Redis CRDT sets are Add-Wins Sets

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Concurrency Semantics
Add-Wins Sets

Let’s choose Add-Wins

Consider a set of known operations Oi , at node i , that is ordered by
an happens-before partial order ≺. Set has elements

{e | add(e) ∈ Oi ∧ @ rmv(e) ∈ Oi · add(e) ≺ rmv(e)}

Is this familiar?

The sequential semantics applies identical rules on a total order

Redis CRDT sets are Add-Wins Sets

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

State-based CRDTs: Basic Add-Wins Set
Observed-remove add-wins

Σ = P(T × V)× P(T)

σ0
i = {}, {}

applyi ((add, v), (s, t)) = s ∪ {(utag(), v)}, t
applyi ((rmv, v), (s, t)) = s, t ∪ {u | (u, v) ∈ s}

evali (rd, s) = {v | (u, v) ∈ s ∧ u 6∈ t}
mergei ((s, t), (s ′, t ′)) = s ∪ s ′, t ∪ t ′

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Equivalence to a sequential execution?
Add-Wins Sets

Can we always explain a concurrent execution by a sequential one?

Concurrent execution

A {x , y} // add(y) // rmv(x) // {y} //

##

{x , y}

B {x , y} // add(x) // rmv(y) // {x} //

;;

{x , y}

Two (failed) sequential explanations

H1 {x , y} // . . . // rmv(x) // {6 x , y}

H2 {x , y} // . . . // rmv(y) // {x , 6 y}

Concurrent executions can have richer outcomes

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Concurrency Semantics
Remove-Wins Sets

Alternative: Let’s choose Remove-Wins

Xi
.

= {e | add(e) ∈ Oi ∧ ∀ rmv(e) ∈ Oi · rmv(e) ≺ add(e)}

Remove-Wins requires more metadata than Add-Wins

Both Add and Remove-Wins have same semantics in a total order

They are different but both preserve sequential semantics

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Concurrency Semantics
Remove-Wins Sets

Alternative: Let’s choose Remove-Wins

Xi
.

= {e | add(e) ∈ Oi ∧ ∀ rmv(e) ∈ Oi · rmv(e) ≺ add(e)}

Remove-Wins requires more metadata than Add-Wins

Both Add and Remove-Wins have same semantics in a total order

They are different but both preserve sequential semantics

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Overview. Delaying choice of semantics

Thought experiment: A CRDT Set data type could store enough
information to allow a parametrized query that shows both Add-Wins
or Remove-Wins. One can expect a metadata size penalty for the
flexibility.

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Sequence/List
Weak/Strong Specification [Attiya et al, PODC 16]

Element x is kept

rpush(b) // 〈xb〉
$$

〈〉 // lpush(x) // 〈x〉

99

%%

〈axb〉

lpush(a) // 〈ax〉

::

Element x is removed (Redis enforces Strong Specification)

rpush(b) // 〈xb〉

""
〈〉 // lpush(x) // 〈x〉

::

$$

// rem(x) // 〈〉 // 〈ab〉 ¬〈ba〉

lpush(a) // 〈ax〉

<<

High Availability
under Eventual

Consistency

Carlos Baquero
Universidade do

Minho

Take home message

Concurrent executions are needed to deal with latency

Behaviour changes when moving from sequential to concurrent

Road to accommodate transition:

Permutation equivalence

Preserving sequential semantics

Concurrent executions lead to richer outcomes

CRDTs provide sound guidelines and encode policies

