Physical and Logical Time

Carlos Baquero
Universidade do Minho

MIEI SDLE 2020

Universidade do Minho

Why should we care?

Everything is distributed

“Distributed systems once were the territory of computer
science Ph.D.s and software architects tucked off in a cor-
ner somewhere. That's no longer the case.”

(2014 http://radar.oreilly.com/2014 /05 /everything-is-distributed)

Anomalies in Distributed Systems

m A buzz, you have a new message, but message is not there yet
m Remove the boss from a group, post to it and she sees posting
m Read a value but cannot overwrite it

m Assorted inconsistencies

Favorited 3 times

i z=# Robert Harper e
@existentialtype

Can't we use time(stamps) to fix it?

Time

The problem with time is that

Distributed Computing

March 10, 2015
Volume 13, issue 3 ™ PDF

There is No Now

Problems with simultaneity in distributed systems

Justin Sheehy
"Now."

The time elapsed between when | wrote that word and when you read it was at
least a couple of weeks. That kind of delay is one that we take for granted and
don't even think about in written media.

(2015 http://queue.acm.org/detail.cfm?id=2745385)

There is no single universal reference frame

Light speed is causality speed

AAST LIGHT CONE

® Hubble ESA, Flickr

Some properties of Time

Time needs memory (since it is countable change)
Time is local (rate of change slows with acceleration)
Time synchronization is harder at distance

Time is a bad proxy for causality

Wall-clock time

Clock drift

Clock drift refers to drift between measured time and a
reference time for the same measurement unit.

Quartz clocks: From 107 to 1078 seconds per second.
1079 seconds per second means 1 one second each 11.6 days.

Atomic clocks: About 10713 seconds per second.

A second is defined in terms of transitions of Cesium-133.
Coordinated Universal Time (UTC), inserts or removes
seconds to sync with orbital time.

External vs internal synchronization

External synchronization states a precision with respect to an
authoritative reference. Internal synchronization states a precision
among two nodes (if one is authoritative it is also external)

External For a band D > 0 and UTC source S we have
| S(t) = Gi(t) [< D
Internal For a band D > 0 we have | C;(t) — Ci(t) |< D

An externally synchronized system at band D is necessarily also at
2D internal synchronization.

Monotonicity

Some uses (e.g. make) require time monotonicity

(t' >t = C(t') > C(t)) on wall-clock adjusting.

Correcting advanced clocks can be obtained by reducing the time
rate until aimed synchrony is reached.

Synchronization: Synchronous system

m Knowing the transit time trans and receiving origin time t,
one could set to t + trans

m However trans can vary between tmin and tmax

Synchronization: Synchronous system

m Knowing the transit time trans and receiving origin time t,
one could set to t + trans

m However trans can vary between tmin and tmax

m Using t 4 tmin or t + tmax the uncertainty is
u = tmax — tmin.

Synchronization: Synchronous system

m Knowing the transit time trans and receiving origin time t,
one could set to t + trans

m However trans can vary between tmin and tmax

m Using t 4 tmin or t + tmax the uncertainty is
u = tmax — tmin.

m But, using t + (tmin + tmax)/2 the uncertainty becomes u/2.

Asynchronous

Now transit time varies between tmin and +o0o
How to update the clocks?

Synchronization: Asynchronous system

Cristian's algorithm

m Send a request m, that triggers response m; carrying time ¢t
m Measure the roud-trip-time of request and reply as t,.
m Set clock to t + t,/2 assuming a balanced round trip

m Precision can be increased by repeating the protocol until a
low t, occurs

Synchronization: Asynchronous system

Cristian's algorithm

m Send a request m, that triggers response m; carrying time ¢t
m Measure the roud-trip-time of request and reply as t,.
m Set clock to t + t,/2 assuming a balanced round trip

m Precision can be increased by repeating the protocol until a
low t, occurs

Berkeley Algorithm

A coordinator measures RTT to the other nodes and sets target
time to the average of times. New times for nodes to set are
propagated as deltas to their local times, in order to be resilient to
propagation delays.

Causality — Happens-before

Lamport 78

Operating R. Stockton Gaines
Systems Editor

Time, Clocks, and the
Ordering of Events in
a Distributed System

Leslie Lamport
Massachusetts Computer Associates, Inc.

The concept of one event happening before another
in a distributed system is examined, and is shown to
define a partial ordering of the events. A distributed
algorithm is given for synchronizing a system of logical
clocks which can be used to totally order the events.
The use of the total ordering is illustrated with a
method for solving synchronization problems. The
algorithm is then specialized for synchronizing physical
clocks, and a bound is derived on how far out of
synchrony the clocks can become.

Key Words and Phrases: distributed systems,
computer networks, clock synchronization, multiprocess
Systems

CR Categories: 4.32, 5.29

(1978 http://amturing.acm.org/p558-lamport.pdf)

Causality

A social interaction

m Alice decides to have dinner

m She tells that to Bob and he agrees
m Meanwhile Chris was bored

m Bob tells Chris and he asks to join for dinner

Causality is a partial order relation

A(lice) s @ . -

Dinner? \

B(Ob) o — [} - [2
Jogging Yes, let’s do it \
C(hris) e @ ° ®
Bored . .. Can | join?
Time - @ — == ———————————— — — — — >
Causally: “Alice wants dinner” || “Chris is bored”

Timeline: “Alice wants dinner” < “Chris is bored”

Causality is only potential influence

A(lice) : ° ° .-

Dinner? \

B(ob) . — o —— .-
Jogging Yes, let’s do it \
C(hris) e @ . P
Bored . .. Can | join?
Time = @ — === — - ——————— - >

Causally: “Bob is jogging” — "Bob says: Yes, let's do it”
... but they are probably unrelated

Causality is only potential influence

Past statements only potentially influence future ones
a=>5;

b = 5;

if (a > 2) c=2;

Causally: " = 5;" — "if (a > 2) c=2;"
...but in fact not

Causality relation

How to track it?

Causality relation

How to track it? Maybe read Vector Clock entry in Wikipedia?

Partial ordering property [edit)
Vector clocks allow for the partial causal ordering of events. Defining the following:

«» VC(z) denotes the vector clock of event -, and 1/ C'(') . denotes the component of that clock for process 2.

s VC(z) < VCO(y) <= Vz[VC(z). < VC(y)| A [VC(z)s < VC(y)-]

« In English: V C()is less than V C(y), if and only it VV C() . is less than or equal to IV C'(y) . for all process indices 2, and at least one of those
relationships is strictly smaller (thatis, V C'(z) .. < V C(y)-0-

« & — Y denotes that event = happened before event Y. It is defined as: if £ — ¥, then VC(;) < VC(y)
Properties:

< 1V C(a) < VC(b).theng — b

« Antisymmetry: it VC'(a) < VC'(b). then =V C'(b) < VC(a)

« Transitivity: ifVC(q) < VC(b)and VC(b) < VC(C), then VC(a) < VC(p)or ifq — bandph — ¢, thena — ¢
Relation with other orders:

« Let RT'(r) be the real time when event z occurs. ItV C'(a) < VC'(b), then RT'(a) < RT'(b)

o Let C’(j) be the Lamport timestamp of event . If VC’(a) < VC’([)), then C(a) < C(b)

(2015 https://en.wikipedia.org/wiki/Vector_clock)

Maybe start with something simpler: Causal histories

Causal histories

Schwarz & Mattern 94

D ing Causal Relationships in Distributed Computations:
In Search of the Holy Grail

Reinhard Schwarz.

Department of Computer Science, University of Kaiserslautern,
PO. Box 3049, D - 67653 Kaiserslautern, Germany
schwarz@informatik.uni-kl.de

Friedemann Mattern

Department of Computer Science, University of Saarland
Im Stadtwald 36, D - 66041 Saarbriicken, Germany
mattern@cs.uni-sb.de

Abstract: The paper shows that characterizing the causal relationship between significant
events is an important but non-trivial aspect for understanding the behavior of distributed
programs. An introduction to the notion of causality and its relation 1o logical time is
given; some ntal results concerning the characterization of causality are pre-
sented. Recent work on the detection of causal relationships in distributed computations
is surveyed. The issue of observing distributed computations in a causally consistent way
and the basic problems of detecting global predicates are discussed. To illustrate the
major difficulties, some typical monitoring and debugging approaches are assessed, and
it is demonstrated how their feasibility is severely limited by the fundamental problem to
master the complexity of causal relationships.

Keywords: Distributed Computation, Causality, Distributed System, Causal Ordering,
Logical Time, Vector Time, Global Predicate Detection, Distributed Debugging, Times-
tamps

(1994 https://www.vs.inf.ethz.ch/publ/papers/holygrail.pdf)

Uniquely tag each event

For instance, node name and growing counter

. a a a
Allice) R > P R
inner?
b \ i
B(ob) i @ o o :
Jogging Yes, let’s do it \
. c C2 c3
C(hris : . . °
() Bored . .. Can | join?

Causal histories

Collect memories as sets of unique events

Set inclusion explains causality
L {317 bl} C {ala a, bl}
You are in my past if | know your history

If we don't know each other’s history, we are concurrent

If our histories are the same, we are the same

Causal histories

A ial} {5;1732} {31.,32:33} - 7
B {b1} \ {a1,a2,b1,b2,b3}
° ° °
{a1,a2,b1,b2} \
C

° ° o
{a} {c,e2} {a1,a2,b1,b2,b3,c1,02,€3}

Causal histories

Message reception

A ﬁal} {ég,az} {al.,az,aa} o 7
{b1} \ {a1,a2,b1,b2,b3}
B) * °
{a1,a2,b1,b2} \
C

° ° P
{ar} {a,c2} {a1,a2,b1,b2,b3,c1,c2,€3}

* receive {a1, ap} at node b with {b;} yields {b;} U{a1, a2} U{bo}

Causal histories

Causality check

A ﬁal} {ég,az} {al.,az,aa} o 7
{b1} \ {a1,a2,b1,b2,b3}
B) * °
{a1,a2,b1,b2} \
C

° ° P
{ar} {a,c2} {a1,a2,b1,b2,b3,c1,c2,€3}

Check ¢ — « iff {31, a2} C {31, as, b1, b2}

Causal histories

Faster causality check

A ﬁal} {ég,az} {al.,az,aa} o 7
{b1} \ {a1,a2,b1,b2,b3}
B) * °
{a1,a2,b1,b2} \
C

° ° P
{ar} {a,c2} {a1,a2,b1,b2,b3,c1,c2,€3}

Check ¢ — x iff ap € {31,32, bl,bz}

Causal histories

A ﬁal} {511732} {31.732733}7 7 -

B £b1} \. {31732‘b17b2,b3} 7
{a1,a2,b1,b2} \

C

° ° P
{ar} {a,c2} {a1,a2,b1,b2,b3,c1,c2,€3}

Note: {ep} C G = {e1...en} C C&

Causal histories

A ﬁal} {ég,az} {al.,az,aa} o 7
{b1} \ {a1,a2,b1,b2,b3}
B ® ° °
{a1,a2,b1,b2} \
C

° ° P
{a1} {a,c2} {a1,a2,b1,b2,b3,c1,02,€3}

Lots of redundancy that can be compressed

Vector clocks

Mattern || Fidge, 88

Virtual Time and Global States of Distributed Systems *
Fricdemann Mattern |

Depastment of dence, Vsl

sdivien

Abstract view of anidenlised external observer having immedinte

Tt prir
view of th

s rpical probh
«

and concur
fve i dinrited i
wralne.

Timestamps in Message-Passing Systems That Preserve the Partial Ordering

Colin J. Fidg
Depariment of Computer Science, Australian National University, Canberra, ACT

ABSTRACT

Keywords and phras
CR categorios: D.1

 concurrent programiming, message-passng, timestamps, logical clocks

INTRODUCTION

A fundumetal problem in concuent progeamnin i dtemining the oxder in wich et in
re An

diterent i o attach & the current time o
et el parall sy, by chet very a1 At v cner somiooey among
th pocemen

There are two solutions Lo this problem,. Firaly, have a central proces to issue timestamps, .. pro-
tem In
Il processes to the central clock.

cceptable are separate clocks in each process that are kept synchronised as much as necessary
o et e et s, e vyl il rering of vt (i Tt of e
vagarios of distibuted scheduling). Lamport (1078) describes just. such a schern o logical clocks that
b umd 1oty orde o, wiin o ed b it e o lns

ever thia only yields one of the many possible, and equally vald, event orderings defined by a
e dboed compation o problens conerned with e global programsa s (ot more

consistent “alices” of the global
state at any arbitzary moment in e,

1988 (http .//WWW.vs.inf.ethz.ch/publ/pa pers/VirtTimeGlobStates.pdf)
(http://zo00.cs.yale.edu/classes/cs426/2012/lab/bib/fidge88timestamps.pdf)

Vector clocks

Compacting causal histories

m {a1,ap, b1, b, b3, 1,2, 3}
m{a—2,b—3,c— 3}

Finally a vector, assuming a fixed number of processes with totally
ordered identifiers

m [2,3,3]

Vector clocks

A [Lo.o] [200] Boo
[0,1,0] \ 2,3,0]
B ° ° °
[2,2,0] \
C

0.0.1] 0.0.2] 23.3]

Vector clocks

Message reception (step 1)

Set union becomes join U by point-wise maximum in vectors

A [10.0] _[200] 13.0.0]
B [0.1.0 * 230
[2,2,0] \
¢ 0.0.1] 0.0.2] 23.3]

* receive [2,0,0] at b with [0, 1,0] yields incy(L)([2, 0, 0], [0,1,0]))

Vector clocks

Message reception (step 2)

Set union becomes join U by point-wise maximum in vectors

A [10.0] _[200] 13.0.0]
B [0.1.0 * 230
[2,2,0] \
¢ 0.0.1] 0.0.2] 23.3]

incp(L([2,0,0],[0,1,0])) = incp([2,1,0]) = [2,2,0]

Vector clocks

Causality check

A 100l _[200] Boo

B [0.1.0] * 230
[2,2,0] \

C

0.0.1] 0.0.2] 23.3]

Check ¢ — x iff point-wise check 2 <2,0<2,0<0

Vector clocks

Graphically

3

0

[2,3,3]={A—2,B+3,C+ 3} = ABC

Vector clocks

Graphically comparing

[3,3,2] || [2,3, 3]

Vector clocks

Graphically comparing

(2,3,2] < [2,3,3]

Vector clocks

Graphical difference

[2,3,3] — [2,3,2] = {c3}

Vector clocks

Graphical message reception

Node b, with [0, 1, 0] is receiving a message with [2,0, 0]

We need to combine the two vectors and update b entry

Vector clocks

Graphical message reception

Node b, with [0, 1,0]:

Vector clocks

Graphical message reception

Point-wise maximum of [2,0,0] and [0, 1, 0]

max(’—‘) = _\

Vector clocks

Graphical message reception

Register a new event on the result

event() =

Vector clocks

Faster causality check

Comparing vectors is linear on the vector size

This can be improved by tracking the last event

Vector clocks with dots

Decouple dot of last event

m [2,0,0] becomes [1,0,0]az

[2,2,0] becomes [2,1,0]b2

The causal past excludes the event itself

Check [2,0,0] — [2,2,0]?

Check [1,0,0]az — [2,1,0]b, iff dot a2 index o < 2

< _‘

Registering relevant events

m Not always important to track all events

m Track only update events in data replicas
m Applications in:

m File-Systems
m Databases
m Version Control

Dynamo

DeCandia et al 07

Causally tracking of write/put operations

(http://www.allthingsdistributed.com /files/amazon-dynamo-sosp2007.pdf)

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

[

D1 ([Sx,1])
l o
hardiod by Sx
D2 ([Sx,2]))
o writo
D3 ([Sx.2].[Sy.1]) D4 ([Sx.2],[Sz.1])
\ / reconcied
andwihon
o

D5 ([Sx,3],[Sy,1][Sz,1])

Figure 3: Version evolution of an object over time,

Amazon.com

object. In practice, this is not likely because the writes are usually
handled by one of the top N nodes in the preference list. In case of
network partitions or multiple server failures, write requests may
be handled by nodes that are not in the top N nodes in the
preference list causing the size of vector clock to grow. In these
Scenarios, it s desirable to limit the size of vector clock. To this

Dynamo employs the following clock fruncation scheme:
Along with each (node, counter) pair, Dynamo stores a timestamp
that indicates the last time the node updated the data item. When
the number of (node, counter) pairs in the vector clock reaches a
threshold (say 10), the oldest pair is removed from the clock.
Clearly, thistruncation scheme can lead to inefficiencies in
reconciliation as the descendant relationships cannot be derived
accurately. However, this problem has not surfaced in production
and therefore this issue has not been thoroughly investigated.

4.5 Execution of get () and put () operations

Any storage node in Dynamo is eligible to receive client get and
put operations for any key. In this section, for sake of simplicity,
we describe how these operations are performed in a failure-free
environment and in the subsequent section we describe how read

Causal histories with only some relevant events

Relevant events are marked with a e and get an unique tag/dot

A ial} éal} {il,az} 7

B ibl} \.M {aléb1,b2}
{a1,b1,b2} \

C

o le) O
{} {} {a1,b1b2}

Other events get a o and don't add to history

Causal histories with only some relevant events

Concurrent states {a1} || {b1} lead to a e marked merge M

A ial} éal} {‘:1732} 7

B ibl} \.M {alébl,bg}
{a1,b1,b2} \

C

o le) O
{} {} {a1,b1b2}

Causally dominated state {} — {a1, b1, ba} is simply replaced

Causal histories with versions not immediately merged

Versions can be collected and merge deferred

A ial} éal} {‘11732} 7 o
{b1} \ {a1,b1,b2} {a1,b1,b2}
B ° o ° o .
{ai},{b1} M \
C

(e] [e] (@] .
{} {} {a1,b1b2}

Causal histories are only merged upon version merging in a new e

Version vectors

Parker et al 83

(1983 http://zoo.cs.yale.edu/classes/cs422 /2013 /bib/parker83detection.pdf)

240 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 3, MAY 1983

Detection of Mutual Inconsistency in
Distributed Systems

D.STOTT PARKER, JR., GERALD J. POPEK, GERARD RUDISIN, ALLEN STOUGHTON,
BRUCE J. WALKER, EVELYN WALTON, JOHANNA M. CHOW,
DAVID EDWARDS, STEPHEN KISER, AND CHARLES KLINE

Abstract—Many _distributed systems are now being developed to
provide users with convenient access to data via some kind of com-
munications network. In many cases it is desirable to keep the system
functioning even when it is partitioned by network failures. A serious
problem in this context is how one can support redundant copies of
resources such as flles (for the sake of rliability) while simultaneously
‘monitoring their mutual consistency (the equality of multiple copies).

ion vectors and origin points, is presented and
shown to detect single file, multiple copy mutual inconsistency effec-
tively. The approach has been used in the design of LOCUS, a local
network operating system at UCLA.

Index Terms—Availat ted systems, mutual consistency,
network failures, i poitoning epicated 4.

‘multiple copies of a file exist, the system must ensure the
mutual consistency of these copies: when one copy of the file
is modified, all must be modified correspondingly before an
independent access can take place.

Much has been written about the problem of maintaining
consistency in distributed systems, ranging from intemal
consistency methods (ways to keep a single copy of a resource
looking consistent to multiple processes attempting to access it
concurrently) to various ingenious updating algorithms which
ensure mutual consistency [1], [2], [6], [8]. [16], ete. We
concern ourselves here with mutual consistency in the face of
network partitioning, ic., the situation where various sites in
the network cannot communicate with each other for some
length of time due to network failures or ste crashes. This is a
very real problem in most networks. For example, even in the
Ethernet [10], gateways can be inoperative for significant
lengths of time, while the Ether segments they nomally

mmant anarnta crrastisr

Version vectors

A [100] _[100] 200
[0,1,0] \ M [1,2,0]

B ° [107270] o \

C

O O O -
[0,0,0] [0,0,0] [1,2,0]

Can Causality scale?

Charron-Bost 91

One entry needed per source of concurrency

Information Processing Letters 39 (1991) 11-16

12 July 1991
North-Holland

Concerning the size of logical clocks
in distributed systems
Bernadette Charron-Bost
LITP. IBP. Université Paris 7, 2 Place Jussiew, 75251 Paris Cedex 05, France

by L. Boasson
Received 18 October 1990
Revued 17 April 1991

Kevwords: Distributed computing. clock. logical time. causality. partially ordered sets

1. Introduction seem very heavy as soon as one is concerned with

a distibuted system on a large number of

difficult to achieve. Therefore, the design and the
proof of distributed algorithms for asynchronous
systems are much more subtle than for a classical
centralized environment.

processes.

In this paper we prove that vectors of this
length are necessary to characterize causality, by
constructing an appropriate distributed computa-
tion. Then we use classical theorems from the
theory of partially ordered sets to give a mathe-
matical interpretation of this result.

(1991 https://doi.org/10.1016,/0020-0190(91)90055-M)

Scaling Causality

Scaling at the edge (DVVs)

m Mediate interaction by DC proxies
m Support failover and DC switching

m One entry per proxy (not per client)

Dynamic concurrency degree (ITCs)

m Creation and retirement of active entities
m Transparent tracking with minimal coordination

m Causality tracing under concurrency across services

Scaling Causality

Dynamo like, get/put interface

get put
A -0 ° -

Meet? Mon

get put
B s G e @ i
/Mcct? <
S o o) ?
s Meet? Meet? ©Fri

m Conditional writes
m Overwrite first value
m Multi-Value ([1,0] || [0, 1], one entry per client!)

Scaling Causality

Causal histories

Dynamo like, get/put interface

A . o) QPUt
0 0
B - R ——— QPUt . .
ya ! X
51}
S, ,
c 0 ¢

Sp

e

Scaling Causality

DVVs. Almeida et al 14

Dotted Version Vectors

Scalable and Accurate Causality Tracking
for Eventually Consistent Stores

Paulo Sérgio Almeida’, Carlos Bz\quemlv
Ricardo Gongalves', Nuno Preguica?, and Victor Fonte'

! HASLab, INESC Tec & Universidade do Minho
{psa, cbm, tome, vif}@di.uminho.pt
2 CITI/DIL, FCT, Universidade Nova de Lisboa
nuno.preguica@fct.unl.pt

Abstract. In cloud computing environments, data storage systems often rely on
optimistic replication to provide good performance and availability even in the
presence of failures or network partitions. In this scenario, it is important to be
able to accurately and efficiently identify updates executed concurrently. Current
approaches to causality tracking in optimistic replication have problems with con-
current updates: they either (1) do not scale, as they require replicas to maintain
information that grows linearly with the number of writes or unique clients; (2)

(2014 https://link.springer.com/chapter/10.1007 /978-3-662-43352-2_6)

Scaling Causality

Dotted Version Vectors

[0,0]s1 || [0,0]s2

Scaling Causality

Dotted Version Vectors

Gets get all values, with compact causal context

[0,0]51 L [0, 0]52 = [2,0]

Scaling Causality

Dotted Version Vectors

Puts can go to alternative servers
Server T can get a put with context [2,0]

[0, 2]t3 H [2, 0] ta

Scaling Causality

Dotted Version Vectors

DVVs are used in the Riak Key-value store, deployed in the British
NHS, BET365 and other global companies.

NHS launches upgraded IT backbone Spine, powered by Riak

Posted September 9,2014\ Category: Press Releases

London, Sept. 9 2014 — the Spine — the electronic backbone of the UK’s National Health Service — has been successfully rebuilt to
harness new technology, including the use of Basho Technologies® distributed database, Riak Enterprise.

The Spine - a collection of national applications, services and directories — connects clinicians, patients and local service providers

throughout England to essential national services, such as electronic prescriptions and patient health records.

Spine is used by more than 20,000 organizations that provide health care across England, including primary and secondary care sites,
pharmacies, opticians and dentists. Riak, the open source distributed database, is key to providing the reliability and scalability for the
platform to drive efficiency and improve patient care.

Dynamic Causality

Tracking causality requires exclusive access to identities

2 2

1 1

id id
ABC = ABC

To avoid preconfiguring identities, id space can be split and joined

Dynamic Causality

ITCs. Almeida et al 08

Interval Tree Clocks
A Logical Clock for Dynamic Systems

Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte

DI/CCTC, Universidade do Minho
Largo do Pago, 4709 Braga Codex, Portugal
{psa,cbm,vff} @di.uminho.pt

Abstract. Causality tracking mechanisms, such as vector clocks and version
vectors, rely on mappings from globally unique identifiers to integer counters.
In a system with a well known set of entities these ids can be preconfigured and
given distinct positions in a vector or distinct names in a mapping. Id management
is more problematic in dynamic systems, with large and highly variable number
of entities, being worsened when network partitions occur. Present solutions for

(2008 https://link.springer.com/chapter/10.1007 /978-3-540-92221-6_18)

Dynamic Causality

Interval Tree Clocks

A seed node controls the initial id space

o

Dynamic Causality

Interval Tree Clocks

Registering events can use any portion above the controlled id

Dynamic Causality

Interval Tree Clocks

Ids can be split from any available entity

Dynamic Causality

Interval Tree Clocks

...and be split again

Dynamic Causality

Interval Tree Clocks

Entities can register new events and become concurrent

[] []

o
I

Dynamic Causality

Interval Tree Clocks

[] [] []

I

Any two entries can merge together

NN

Dynamic Causality

Interval Tree Clocks

...eventually collecting the whole id space

Dynamic Causality

Interval Tree Clocks

... and simplifying the encoding of events

Global Invariants on IDs

Causality characterization condition

Each entity has a portion of its identity that is exclusive to it. This
means each entity having an identity which maps to 1 some
element which is mapped to 0 in all other entities.

Vi (i i) # i
it i
Entity events must use at least a part of the exclusive portion.

Disjoint condition

A less general but more practical condition is that all identities are
kept disjoint.
Vip # ip. i1- i =0.

Any portion of the id can be used to register events.

Dynamic Causality

Interval Tree Clocks

ITCs are used in concurrency tracing and debugging, and
distributed settings within the Pivot tracing system.

Pivot tracing: dynamic causal monitoring for distributed systems
Full Text: PDF

see source materials below for more options & 2015 Artice

Authors: Jonathan Mace Brown University.

Ryan Roelke Brown University.

Rodrigo Fonseca Brown University

‘P Best Paper

Published in: —d Bibliometrics
+ Proceeding - Citation Count: 17
“ SOSP '15 Proceedings of the 25th Symposium on Operating oot e
¥ Systems Principles - Downloads (6 Weeks): 18
< Pages 378-393

Monterey, California — October 04 - 07, 2015

ACM New York, NY, USA ©2015

table of contents ISBN: 978-1-4503-3834-9
doi>10.114512815400.2815415

Closing notes

Causality is important because time is limited
Causality is about memory of relevant events
Causal histories are very simple encodings of causality
VC, DVV, ITC do efficient encoding of causal histories

All mechanisms are only encoding of causal histories

Graphical representations allow visualization of causality, this is
useful in comparing existing mechanisms and to develop novel ones.

