
Physical and Logical Time

Carlos Baquero
Universidade do Minho

MIEI SDLE 2020

1/74

2/74

Causality

Why should we care?

3/74

Everything is distributed

“Distributed systems once were the territory of computer
science Ph.D.s and software architects tucked off in a cor-
ner somewhere. That’s no longer the case.”

(2014 http://radar.oreilly.com/2014/05/everything-is-distributed)

4/74

Anomalies in Distributed Systems

A buzz, you have a new message, but message is not there yet

Remove the boss from a group, post to it and she sees posting

Read a value but cannot overwrite it

Assorted inconsistencies

5/74

Time

Can’t we use time(stamps) to fix it?

6/74

Time

The problem with time is that

(2015 http://queue.acm.org/detail.cfm?id=2745385)

There is no single universal reference frame

7/74

Light speed is causality speed

CC© BY:© Hubble ESA, Flickr

8/74

Some properties of Time

Time needs memory (since it is countable change)

Time is local (rate of change slows with acceleration)

Time synchronization is harder at distance

Time is a bad proxy for causality

9/74

Wall-clock time
Clock drift

Clock drift refers to drift between measured time and a
reference time for the same measurement unit.

Quartz clocks: From 10−6 to 10−8 seconds per second.

10−6 seconds per second means 1 one second each 11.6 days.

Atomic clocks: About 10−13 seconds per second.

A second is defined in terms of transitions of Cesium-133.
Coordinated Universal Time (UTC), inserts or removes
seconds to sync with orbital time.

10/74

External vs internal synchronization

External synchronization states a precision with respect to an
authoritative reference. Internal synchronization states a precision
among two nodes (if one is authoritative it is also external)

External For a band D > 0 and UTC source S we have
| S(t)− Ci (t) |< D

Internal For a band D > 0 we have | Cj(t)− Ci (t) |< D

An externally synchronized system at band D is necessarily also at
2D internal synchronization.

11/74

Monotonicity

Some uses (e.g. make) require time monotonicity
(t ′ > t ⇒ C (t ′) > C (t)) on wall-clock adjusting.
Correcting advanced clocks can be obtained by reducing the time
rate until aimed synchrony is reached.

12/74

Synchronization: Synchronous system

Knowing the transit time trans and receiving origin time t,
one could set to t + trans

However trans can vary between tmin and tmax

Using t + tmin or t + tmax the uncertainty is
u = tmax − tmin.

But, using t + (tmin + tmax)/2 the uncertainty becomes u/2.

Asynchronous

Now transit time varies between tmin and +∞
How to update the clocks?

12/74

Synchronization: Synchronous system

Knowing the transit time trans and receiving origin time t,
one could set to t + trans

However trans can vary between tmin and tmax

Using t + tmin or t + tmax the uncertainty is
u = tmax − tmin.

But, using t + (tmin + tmax)/2 the uncertainty becomes u/2.

Asynchronous

Now transit time varies between tmin and +∞
How to update the clocks?

12/74

Synchronization: Synchronous system

Knowing the transit time trans and receiving origin time t,
one could set to t + trans

However trans can vary between tmin and tmax

Using t + tmin or t + tmax the uncertainty is
u = tmax − tmin.

But, using t + (tmin + tmax)/2 the uncertainty becomes u/2.

Asynchronous

Now transit time varies between tmin and +∞
How to update the clocks?

13/74

Synchronization: Asynchronous system
Cristian’s algorithm

Send a request mr that triggers response mt carrying time t

Measure the roud-trip-time of request and reply as tr .

Set clock to t + tr/2 assuming a balanced round trip

Precision can be increased by repeating the protocol until a
low tr occurs

Berkeley Algorithm

A coordinator measures RTT to the other nodes and sets target
time to the average of times. New times for nodes to set are
propagated as deltas to their local times, in order to be resilient to
propagation delays.

13/74

Synchronization: Asynchronous system
Cristian’s algorithm

Send a request mr that triggers response mt carrying time t

Measure the roud-trip-time of request and reply as tr .

Set clock to t + tr/2 assuming a balanced round trip

Precision can be increased by repeating the protocol until a
low tr occurs

Berkeley Algorithm

A coordinator measures RTT to the other nodes and sets target
time to the average of times. New times for nodes to set are
propagated as deltas to their local times, in order to be resilient to
propagation delays.

14/74

Causality – Happens-before
Lamport 78

(1978 http://amturing.acm.org/p558-lamport.pdf)

15/74

Causality

A social interaction

Alice decides to have dinner

She tells that to Bob and he agrees

Meanwhile Chris was bored

Bob tells Chris and he asks to join for dinner

16/74

Causality is a partial order relation

A(lice) •
Dinner?

// • //

��

•

B(ob) •
Jogging

// •
Yes, let’s do it

// •

��
C (hris) • // •

Bored . . .
// •

Can I join?

Time //

Causally: “Alice wants dinner” ‖ “Chris is bored”
Timeline: “Alice wants dinner” < “Chris is bored”

17/74

Causality is only potential influence

A(lice) •
Dinner?

// • //

��

•

B(ob) •
Jogging

// •
Yes, let’s do it

// •

��
C (hris) • // •

Bored . . .
// •

Can I join?

Time //

Causally: “Bob is jogging” → “Bob says: Yes, let’s do it”
. . . but they are probably unrelated

18/74

Causality is only potential influence

Past statements only potentially influence future ones

a = 5;

b = 5;

if (a > 2) c=2;

Causally: “b = 5;” → “if (a > 2) c=2;”
. . . but in fact not

19/74

Causality relation

How to track it?

20/74

Causality relation

How to track it? Maybe read Vector Clock entry in Wikipedia?

(2015 https://en.wikipedia.org/wiki/Vector clock)

Maybe start with something simpler: Causal histories

21/74

Causal histories
Schwarz & Mattern 94

(1994 https://www.vs.inf.ethz.ch/publ/papers/holygrail.pdf)

22/74

Uniquely tag each event

For instance, node name and growing counter

A(lice) •a1
Dinner?

// •a2 //

��

•a3

B(ob) •b1
Jogging

// •b2
Yes, let’s do it

// •b3

��
C (hris) •c1 // •c2

Bored . . .
// •c3

Can I join?

23/74

Causal histories

Collect memories as sets of unique events

Set inclusion explains causality

{a1, b1} ⊂ {a1, a2, b1}
You are in my past if I know your history

If we don’t know each other’s history, we are concurrent

If our histories are the same, we are the same

24/74

Causal histories

A •
{a1} // •

{a1,a2} //

��

•
{a1,a2,a3}

B •
{b1} // •

{a1,a2,b1,b2}
// •

{a1,a2,b1,b2,b3}

��
C •

{c1}
// •
{c1,c2}

// •
{a1,a2,b1,b2,b3,c1,c2,c3}

25/74

Causal histories
Message reception

A •
{a1} // •

{a1,a2} //

��

•
{a1,a2,a3}

B •
{b1} // ?

{a1,a2,b1,b2}
// •

{a1,a2,b1,b2,b3}

��
C •

{c1}
// •
{c1,c2}

// •
{a1,a2,b1,b2,b3,c1,c2,c3}

? receive {a1, a2} at node b with {b1} yields {b1} ∪ {a1, a2} ∪ {b2}

26/74

Causal histories
Causality check

A •
{a1} // �

{a1,a2} //

��

•
{a1,a2,a3}

B •
{b1} // ?

{a1,a2,b1,b2}
// •

{a1,a2,b1,b2,b3}

��
C •

{c1}
// •
{c1,c2}

// •
{a1,a2,b1,b2,b3,c1,c2,c3}

Check � → ? iff {a1, a2} ⊂ {a1, a2, b1,b2}

27/74

Causal histories
Faster causality check

A •
{a1} // �

{a1,a2} //

��

•
{a1,a2,a3}

B •
{b1} // ?

{a1,a2,b1,b2}
// •

{a1,a2,b1,b2,b3}

��
C •

{c1}
// •
{c1,c2}

// •
{a1,a2,b1,b2,b3,c1,c2,c3}

Check � → ? iff a2 ∈ {a1, a2, b1,b2}

28/74

Causal histories

A •
{a1} // •

{a1,a2} //

��

•
{a1,a2,a3}

B •
{b1} // •

{a1,a2,b1,b2}
// •

{a1,a2,b1,b2,b3}

��
C •

{c1}
// •
{c1,c2}

// •
{a1,a2,b1,b2,b3,c1,c2,c3}

Note: {en} ⊂ Cx ⇒ {e1 . . . en} ⊂ Cx

29/74

Causal histories

A •
{a1} // •

{a1,a2} //

��

•
{a1,a2,a3}

B •
{b1} // •

{a1,a2,b1,b2}
// •

{a1,a2,b1,b2,b3}

��
C •

{c1}
// •
{c1,c2}

// •
{a1,a2,b1,b2,b3,c1,c2,c3}

Lots of redundancy that can be compressed

30/74

Vector clocks
Mattern ‖ Fidge, 88

1988 (https://www.vs.inf.ethz.ch/publ/papers/VirtTimeGlobStates.pdf)

(http://zoo.cs.yale.edu/classes/cs426/2012/lab/bib/fidge88timestamps.pdf)

31/74

Vector clocks
Compacting causal histories

{a1, a2, b1, b2, b3, c1, c2, c3}
{a 7→ 2, b 7→ 3, c 7→ 3}

Finally a vector, assuming a fixed number of processes with totally
ordered identifiers

[2, 3, 3]

32/74

Vector clocks

A •
[1,0,0] // •

[2,0,0] //

��

•
[3,0,0]

B •
[0,1,0] // •

[2,2,0]
// •
[2,3,0]

��
C •

[0,0,1]
// •
[0,0,2]

// •
[2,3,3]

33/74

Vector clocks
Message reception (step 1)

Set union becomes join t by point-wise maximum in vectors

A •
[1,0,0] // •

[2,0,0] //

��

•
[3,0,0]

B •
[0,1,0] // ?

[2,2,0]
// •
[2,3,0]

��
C •

[0,0,1]
// •
[0,0,2]

// •
[2,3,3]

? receive [2, 0, 0] at b with [0, 1, 0] yields incb(t([2, 0, 0], [0, 1, 0]))

34/74

Vector clocks
Message reception (step 2)

Set union becomes join t by point-wise maximum in vectors

A •
[1,0,0] // •

[2,0,0] //

��

•
[3,0,0]

B •
[0,1,0] // ?

[2,2,0]
// •
[2,3,0]

��
C •

[0,0,1]
// •
[0,0,2]

// •
[2,3,3]

incb(t([2, 0, 0], [0, 1, 0])) ≡ incb([2, 1, 0]) ≡ [2, 2, 0]

35/74

Vector clocks
Causality check

A •
[1,0,0] // �

[2,0,0] //

��

•
[3,0,0]

B •
[0,1,0] // ?

[2,2,0]
// •
[2,3,0]

��
C •

[0,0,1]
// •
[0,0,2]

// •
[2,3,3]

Check � → ? iff point-wise check 2 ≤ 2, 0 ≤ 2, 0 ≤ 0

36/74

Vector clocks
Graphically

[2, 3, 3] ≡ {A 7→ 2,B 7→ 3,C 7→ 3} ≡ A B C
1
2
3

37/74

Vector clocks
Graphically comparing

[3, 3, 2] ‖ [2, 3, 3]

‖

38/74

Vector clocks
Graphically comparing

[2, 3, 2] < [2, 3, 3]

<

39/74

Vector clocks
Graphical difference

[2, 3, 3]− [2, 3, 2] = {c3}

− =

40/74

Vector clocks
Graphical message reception

Node b, with [0, 1, 0] is receiving a message with [2, 0, 0]

We need to combine the two vectors and update b entry

41/74

Vector clocks
Graphical message reception

Node b, with [0, 1, 0]:

A B C
id
1
2

42/74

Vector clocks
Graphical message reception

Point-wise maximum of [2, 0, 0] and [0, 1, 0]

max(,) =

43/74

Vector clocks
Graphical message reception

Register a new event on the result

event() =

44/74

Vector clocks
Faster causality check

Comparing vectors is linear on the vector size

This can be improved by tracking the last event

45/74

Vector clocks with dots
Decouple dot of last event

[2, 0, 0] becomes [1, 0, 0]a2

[2, 2, 0] becomes [2, 1, 0]b2

The causal past excludes the event itself

Check [2, 0, 0]→ [2, 2, 0]?

Check [1, 0, 0]a2 → [2, 1, 0]b2 iff dot a2 index 2 ≤ 2

<

46/74

Registering relevant events

Not always important to track all events

Track only update events in data replicas

Applications in:

File-Systems
Databases
Version Control

47/74

Dynamo
DeCandia et al 07

Causally tracking of write/put operations

(http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf)

48/74

Causal histories with only some relevant events

Relevant events are marked with a • and get an unique tag/dot

A •
{a1} // ◦

{a1} //

��

•
{a1,a2}

B •
{b1} // •

{a1,b1,b2}
M // ◦

{a1,b1,b2}

��
C ◦

{}
// ◦
{}

// ◦
{a1,b1b2}

Other events get a ◦ and don’t add to history

49/74

Causal histories with only some relevant events

Concurrent states {a1} ‖ {b1} lead to a • marked merge M

A •
{a1} // ◦

{a1} //

��

•
{a1,a2}

B •
{b1} // •

{a1,b1,b2}
M // ◦

{a1,b1,b2}

��
C ◦

{}
// ◦
{}

// ◦
{a1,b1b2}

Causally dominated state {} → {a1, b1, b2} is simply replaced

50/74

Causal histories with versions not immediately merged

Versions can be collected and merge deferred

A •
{a1} // ◦

{a1} //

��

•
{a1,a2}

B •
{b1} // ◦

{a1},{b1}
// •
{a1,b1,b2}
M

// ◦
{a1,b1,b2}

��
C ◦

{}
// ◦
{}

// ◦
{a1,b1b2}

Causal histories are only merged upon version merging in a new •

51/74

Version vectors
Parker et al 83

(1983 http://zoo.cs.yale.edu/classes/cs422/2013/bib/parker83detection.pdf)

52/74

Version vectors

A •
[1,0,0] // ◦

[1,0,0] //

��

•
[2,0,0]

B •
[0,1,0] // •

[1,2,0]

M // ◦
[1,2,0]

��
C ◦

[0,0,0]
// ◦
[0,0,0]

// ◦
[1,2,0]

53/74

Can Causality scale?
Charron-Bost 91

One entry needed per source of concurrency

(1991 https://doi.org/10.1016/0020-0190(91)90055-M)

54/74

Scaling Causality

Scaling at the edge (DVVs)

Mediate interaction by DC proxies

Support failover and DC switching

One entry per proxy (not per client)

Dynamic concurrency degree (ITCs)

Creation and retirement of active entities

Transparent tracking with minimal coordination

Causality tracing under concurrency across services

55/74

Scaling Causality

Dynamo like, get/put interface

A ◦get
Meet?

// •put
Mon

��

B ◦get
Meet?

// •put
Fri

��
Ss ◦

Meet?
//

HH

◦

@@

Meet?
// �

Fri
// ?

Conditional writes

Overwrite first value

Multi-Value ([1, 0] ‖ [0, 1], one entry per client!)

56/74

Scaling Causality
Causal histories

Dynamo like, get/put interface

A ◦
{}

// •put
{}

��

B ◦
{}

// •put
{}

��
Ss ◦

{}
//

HH

◦

@@

{}
// �
{s1} // �

{s1},{s2}

St

57/74

Scaling Causality
DVVs. Almeida et al 14

Dotted Version Vectors

(2014 https://link.springer.com/chapter/10.1007/978-3-662-43352-2 6)

58/74

Scaling Causality
Dotted Version Vectors

[0, 0]s1 ‖ [0, 0]s2

S T ‖ S T

59/74

Scaling Causality
Dotted Version Vectors

Gets get all values, with compact causal context

[0, 0]s1 t [0, 0]s2 = [2, 0]

S T t S T = S T

60/74

Scaling Causality
Dotted Version Vectors

Puts can go to alternative servers
Server T can get a put with context [2, 0]

[0, 2]t3 ‖ [2, 0]t4

S T ‖ S T

61/74

Scaling Causality
Dotted Version Vectors

DVVs are used in the Riak Key-value store, deployed in the British
NHS, BET365 and other global companies.

62/74

Dynamic Causality

Tracking causality requires exclusive access to identities

A B C
id
1
2

→ A B C
id
1
2

To avoid preconfiguring identities, id space can be split and joined

63/74

Dynamic Causality
ITCs. Almeida et al 08

(2008 https://link.springer.com/chapter/10.1007/978-3-540-92221-6 18)

64/74

Dynamic Causality
Interval Tree Clocks

A seed node controls the initial id space

id

65/74

Dynamic Causality
Interval Tree Clocks

Registering events can use any portion above the controlled id

id
1
2

66/74

Dynamic Causality
Interval Tree Clocks

Ids can be split from any available entity

67/74

Dynamic Causality
Interval Tree Clocks

. . . and be split again

68/74

Dynamic Causality
Interval Tree Clocks

Entities can register new events and become concurrent

69/74

Dynamic Causality
Interval Tree Clocks

Any two entries can merge together

70/74

Dynamic Causality
Interval Tree Clocks

. . . eventually collecting the whole id space

71/74

Dynamic Causality
Interval Tree Clocks

. . . and simplifying the encoding of events

72/74

Global Invariants on IDs

Causality characterization condition

Each entity has a portion of its identity that is exclusive to it. This
means each entity having an identity which maps to 1 some
element which is mapped to 0 in all other entities.

∀i . (i ·
⊔
i ′ 6=i

i ′) 6= i .

Entity events must use at least a part of the exclusive portion.

Disjoint condition

A less general but more practical condition is that all identities are
kept disjoint.

∀i1 6= i2. i1 · i2 = 0.

Any portion of the id can be used to register events.

73/74

Dynamic Causality
Interval Tree Clocks

ITCs are used in concurrency tracing and debugging, and in
distributed settings within the Pivot tracing system.

74/74

Closing notes

Causality is important because time is limited

Causality is about memory of relevant events

Causal histories are very simple encodings of causality

VC, DVV, ITC do efficient encoding of causal histories

All mechanisms are only encoding of causal histories

Graphical representations allow visualization of causality, this is
useful in comparing existing mechanisms and to develop novel ones.

